Metamath Proof Explorer


Theorem imaexi

Description: The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis imaexi.1 AV
Assertion imaexi ABV

Proof

Step Hyp Ref Expression
1 imaexi.1 AV
2 imaexg AVABV
3 1 2 ax-mp ABV