Metamath Proof Explorer


Theorem imdistan

Description: Distribution of implication with conjunction. (Contributed by NM, 31-May-1999) (Proof shortened by Wolf Lammen, 6-Dec-2012)

Ref Expression
Assertion imdistan φψχφψφχ

Proof

Step Hyp Ref Expression
1 pm5.42 φψχφψφχ
2 impexp φψφχφψφχ
3 1 2 bitr4i φψχφψφχ