Metamath Proof Explorer


Theorem impbid1

Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007)

Ref Expression
Hypotheses impbid1.1 φψχ
impbid1.2 χψ
Assertion impbid1 φψχ

Proof

Step Hyp Ref Expression
1 impbid1.1 φψχ
2 impbid1.2 χψ
3 2 a1i φχψ
4 1 3 impbid φψχ