Metamath Proof Explorer


Theorem impsingle-step15

Description: Derivation of impsingle-step15 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 15 in Lukasiewicz, where it appears as 'CCCrqCspCCrpCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step15 φ ψ χ θ φ θ χ θ

Proof

Step Hyp Ref Expression
1 impsingle θ λ φ φ θ χ θ
2 impsingle τ σ ρ ρ τ μ τ
3 impsingle φ θ χ θ η θ λ φ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ
4 impsingle χ θ ζ φ ψ φ ψ χ θ φ θ χ θ
5 impsingle-step8 χ θ ζ φ ψ φ ψ χ θ φ θ χ θ φ ψ φ ψ χ θ φ θ χ θ
6 4 5 ax-mp φ ψ φ ψ χ θ φ θ χ θ
7 impsingle φ ψ φ ψ χ θ φ θ χ θ φ ψ χ θ φ θ χ θ φ θ λ φ
8 6 7 ax-mp φ ψ χ θ φ θ χ θ φ θ λ φ
9 impsingle φ ψ χ θ φ θ χ θ φ θ λ φ θ λ φ φ ψ χ θ φ θ χ θ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ
10 8 9 ax-mp θ λ φ φ ψ χ θ φ θ χ θ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ
11 impsingle θ λ φ φ ψ χ θ φ θ χ θ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ θ λ φ φ θ χ θ η θ λ φ
12 10 11 ax-mp θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ θ λ φ φ θ χ θ η θ λ φ
13 impsingle θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ θ λ φ φ θ χ θ η θ λ φ φ θ χ θ η θ λ φ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ τ σ ρ ρ τ μ τ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ
14 12 13 ax-mp φ θ χ θ η θ λ φ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ τ σ ρ ρ τ μ τ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ
15 3 14 ax-mp τ σ ρ ρ τ μ τ θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ
16 2 15 ax-mp θ λ φ φ θ χ θ φ ψ χ θ φ θ χ θ
17 1 16 ax-mp φ ψ χ θ φ θ χ θ