Metamath Proof Explorer


Theorem impsingle-step4

Description: Derivation of impsingle-step4 from ax-mp and impsingle . It is used as a lemma in proofs of imim1 and peirce from impsingle . It is Step 4 in Lukasiewicz, where it appears as 'CCCpqpCsp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step4 φψφχφ

Proof

Step Hyp Ref Expression
1 impsingle τηζζτστ
2 impsingle φθφψφψφχφ
3 impsingle φψφψφψφχφ
4 impsingle φψφψφψφχφφψφχφφψφθφψ
5 3 4 ax-mp φψφχφφψφθφψ
6 impsingle φψφχφφψφθφψφθφψφψφχφτηζζτστφψφχφ
7 5 6 ax-mp φθφψφψφχφτηζζτστφψφχφ
8 2 7 ax-mp τηζζτστφψφχφ
9 1 8 ax-mp φψφχφ