Metamath Proof Explorer


Theorem impsingle-step8

Description: Derivation of impsingle-step8 from ax-mp and impsingle . It is used as a lemma in proofs of ax-1 imim1 and peirce from impsingle . It is Step 8 in Lukasiewicz, where it appears as 'CCCsqpCqp' using parenthesis-free prefix notation. (Contributed by Larry Lesyna and Jeffrey P. Machado, 2-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion impsingle-step8 φψχψχ

Proof

Step Hyp Ref Expression
1 impsingle τηζζτστ
2 impsingle χθφψφψχψχ
3 impsingle ψθψχψχψφψ
4 impsingle ψχψχψχψφψ
5 impsingle ψχψχψχψφψψχψφψψχψθψχ
6 4 5 ax-mp ψχψφψψχψθψχ
7 impsingle ψχψφψψχψθψχψθψχψχψφψτηζζτστψχψφψ
8 6 7 ax-mp ψθψχψχψφψτηζζτστψχψφψ
9 3 8 ax-mp τηζζτστψχψφψ
10 1 9 ax-mp ψχψφψ
11 impsingle ψχψφψφψψχφψχψχ
12 10 11 ax-mp φψψχφψχψχ
13 impsingle φψψχφψχψχφψχψχφψχθφψ
14 12 13 ax-mp φψχψχφψχθφψ
15 impsingle φψχψχφψχθφψχθφψφψχψχτηζζτστφψχψχ
16 14 15 ax-mp χθφψφψχψχτηζζτστφψχψχ
17 2 16 ax-mp τηζζτστφψχψχ
18 1 17 ax-mp φψχψχ