Metamath Proof Explorer


Theorem inawinalem

Description: Lemma for inawina . (Contributed by Mario Carneiro, 8-Jun-2014)

Ref Expression
Assertion inawinalem AOnxA𝒫xAxAyAxy

Proof

Step Hyp Ref Expression
1 sdomdom 𝒫xA𝒫xA
2 ondomen AOn𝒫xA𝒫xdomcard
3 isnum2 𝒫xdomcardyOny𝒫x
4 2 3 sylib AOn𝒫xAyOny𝒫x
5 1 4 sylan2 AOn𝒫xAyOny𝒫x
6 ensdomtr y𝒫x𝒫xAyA
7 6 ad2ant2l yOny𝒫xAOn𝒫xAyA
8 sdomel yOnAOnyAyA
9 8 ad2ant2r yOny𝒫xAOn𝒫xAyAyA
10 7 9 mpd yOny𝒫xAOn𝒫xAyA
11 vex xV
12 11 canth2 x𝒫x
13 ensym y𝒫x𝒫xy
14 sdomentr x𝒫x𝒫xyxy
15 12 13 14 sylancr y𝒫xxy
16 15 ad2antlr yOny𝒫xAOn𝒫xAxy
17 10 16 jca yOny𝒫xAOn𝒫xAyAxy
18 17 expcom AOn𝒫xAyOny𝒫xyAxy
19 18 reximdv2 AOn𝒫xAyOny𝒫xyAxy
20 5 19 mpd AOn𝒫xAyAxy
21 20 ex AOn𝒫xAyAxy
22 21 ralimdv AOnxA𝒫xAxAyAxy