Metamath Proof Explorer


Theorem ind0

Description: Value of the indicator function where it is 0 . (Contributed by Thierry Arnoux, 14-Aug-2017)

Ref Expression
Assertion ind0 O V A O X O A 𝟙 O A X = 0

Proof

Step Hyp Ref Expression
1 eldifi X O A X O
2 indfval O V A O X O 𝟙 O A X = if X A 1 0
3 1 2 syl3an3 O V A O X O A 𝟙 O A X = if X A 1 0
4 eldifn X O A ¬ X A
5 4 3ad2ant3 O V A O X O A ¬ X A
6 5 iffalsed O V A O X O A if X A 1 0 = 0
7 3 6 eqtrd O V A O X O A 𝟙 O A X = 0