Metamath Proof Explorer


Theorem indfval

Description: Value of the indicator function. (Contributed by Thierry Arnoux, 13-Aug-2017)

Ref Expression
Assertion indfval OVAOXO𝟙OAX=ifXA10

Proof

Step Hyp Ref Expression
1 indval OVAO𝟙OA=xOifxA10
2 1 3adant3 OVAOXO𝟙OA=xOifxA10
3 simpr OVAOXOx=Xx=X
4 3 eleq1d OVAOXOx=XxAXA
5 4 ifbid OVAOXOx=XifxA10=ifXA10
6 simp3 OVAOXOXO
7 1re 1
8 0re 0
9 7 8 ifcli ifXA10
10 9 a1i OVAOXOifXA10
11 2 5 6 10 fvmptd OVAOXO𝟙OAX=ifXA10