Metamath Proof Explorer


Theorem indval

Description: Value of the indicator function generator for a set A and a domain O . (Contributed by Thierry Arnoux, 2-Feb-2017)

Ref Expression
Assertion indval OVAO𝟙OA=xOifxA10

Proof

Step Hyp Ref Expression
1 indv OV𝟙O=a𝒫OxOifxa10
2 1 adantr OVAO𝟙O=a𝒫OxOifxa10
3 eleq2 a=AxaxA
4 3 ifbid a=Aifxa10=ifxA10
5 4 mpteq2dv a=AxOifxa10=xOifxA10
6 5 adantl OVAOa=AxOifxa10=xOifxA10
7 ssexg AOOVAV
8 7 ancoms OVAOAV
9 simpr OVAOAO
10 8 9 elpwd OVAOA𝒫O
11 mptexg OVxOifxA10V
12 11 adantr OVAOxOifxA10V
13 2 6 10 12 fvmptd OVAO𝟙OA=xOifxA10