Metamath Proof Explorer


Theorem indval2

Description: Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017)

Ref Expression
Assertion indval2 OVAO𝟙OA=A×1OA×0

Proof

Step Hyp Ref Expression
1 dfmpt3 xOifxA10=xOx×ifxA10
2 indval OVAO𝟙OA=xOifxA10
3 undif AOAOA=O
4 3 biimpi AOAOA=O
5 4 adantl OVAOAOA=O
6 5 iuneq1d OVAOxAOAx×ifxA10=xOx×ifxA10
7 1 2 6 3eqtr4a OVAO𝟙OA=xAOAx×ifxA10
8 iunxun xAOAx×ifxA10=xAx×ifxA10xOAx×ifxA10
9 7 8 eqtrdi OVAO𝟙OA=xAx×ifxA10xOAx×ifxA10
10 iftrue xAifxA10=1
11 10 sneqd xAifxA10=1
12 11 xpeq2d xAx×ifxA10=x×1
13 12 iuneq2i xAx×ifxA10=xAx×1
14 iunxpconst xAx×1=A×1
15 13 14 eqtri xAx×ifxA10=A×1
16 eldifn xOA¬xA
17 iffalse ¬xAifxA10=0
18 17 sneqd ¬xAifxA10=0
19 16 18 syl xOAifxA10=0
20 19 xpeq2d xOAx×ifxA10=x×0
21 20 iuneq2i xOAx×ifxA10=xOAx×0
22 iunxpconst xOAx×0=OA×0
23 21 22 eqtri xOAx×ifxA10=OA×0
24 15 23 uneq12i xAx×ifxA10xOAx×ifxA10=A×1OA×0
25 9 24 eqtrdi OVAO𝟙OA=A×1OA×0