Metamath Proof Explorer


Theorem indval2

Description: Alternate value of the indicator function generator. (Contributed by Thierry Arnoux, 2-Feb-2017)

Ref Expression
Assertion indval2 O V A O 𝟙 O A = A × 1 O A × 0

Proof

Step Hyp Ref Expression
1 dfmpt3 x O if x A 1 0 = x O x × if x A 1 0
2 indval O V A O 𝟙 O A = x O if x A 1 0
3 undif A O A O A = O
4 3 biimpi A O A O A = O
5 4 adantl O V A O A O A = O
6 5 iuneq1d O V A O x A O A x × if x A 1 0 = x O x × if x A 1 0
7 1 2 6 3eqtr4a O V A O 𝟙 O A = x A O A x × if x A 1 0
8 iunxun x A O A x × if x A 1 0 = x A x × if x A 1 0 x O A x × if x A 1 0
9 7 8 eqtrdi O V A O 𝟙 O A = x A x × if x A 1 0 x O A x × if x A 1 0
10 iftrue x A if x A 1 0 = 1
11 10 sneqd x A if x A 1 0 = 1
12 11 xpeq2d x A x × if x A 1 0 = x × 1
13 12 iuneq2i x A x × if x A 1 0 = x A x × 1
14 iunxpconst x A x × 1 = A × 1
15 13 14 eqtri x A x × if x A 1 0 = A × 1
16 eldifn x O A ¬ x A
17 iffalse ¬ x A if x A 1 0 = 0
18 17 sneqd ¬ x A if x A 1 0 = 0
19 16 18 syl x O A if x A 1 0 = 0
20 19 xpeq2d x O A x × if x A 1 0 = x × 0
21 20 iuneq2i x O A x × if x A 1 0 = x O A x × 0
22 iunxpconst x O A x × 0 = O A × 0
23 21 22 eqtri x O A x × if x A 1 0 = O A × 0
24 15 23 uneq12i x A x × if x A 1 0 x O A x × if x A 1 0 = A × 1 O A × 0
25 9 24 eqtrdi O V A O 𝟙 O A = A × 1 O A × 0