| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfmpt3 |
⊢ ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) = ∪ 𝑥 ∈ 𝑂 ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) |
| 2 |
|
indval |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) = ( 𝑥 ∈ 𝑂 ↦ if ( 𝑥 ∈ 𝐴 , 1 , 0 ) ) ) |
| 3 |
|
undif |
⊢ ( 𝐴 ⊆ 𝑂 ↔ ( 𝐴 ∪ ( 𝑂 ∖ 𝐴 ) ) = 𝑂 ) |
| 4 |
3
|
biimpi |
⊢ ( 𝐴 ⊆ 𝑂 → ( 𝐴 ∪ ( 𝑂 ∖ 𝐴 ) ) = 𝑂 ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( 𝐴 ∪ ( 𝑂 ∖ 𝐴 ) ) = 𝑂 ) |
| 6 |
5
|
iuneq1d |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ∪ 𝑥 ∈ ( 𝐴 ∪ ( 𝑂 ∖ 𝐴 ) ) ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) = ∪ 𝑥 ∈ 𝑂 ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) ) |
| 7 |
1 2 6
|
3eqtr4a |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) = ∪ 𝑥 ∈ ( 𝐴 ∪ ( 𝑂 ∖ 𝐴 ) ) ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) ) |
| 8 |
|
iunxun |
⊢ ∪ 𝑥 ∈ ( 𝐴 ∪ ( 𝑂 ∖ 𝐴 ) ) ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) = ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) ∪ ∪ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) ) |
| 9 |
7 8
|
eqtrdi |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) = ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) ∪ ∪ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) ) ) |
| 10 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) = 1 ) |
| 11 |
10
|
sneqd |
⊢ ( 𝑥 ∈ 𝐴 → { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } = { 1 } ) |
| 12 |
11
|
xpeq2d |
⊢ ( 𝑥 ∈ 𝐴 → ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) = ( { 𝑥 } × { 1 } ) ) |
| 13 |
12
|
iuneq2i |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { 1 } ) |
| 14 |
|
iunxpconst |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { 1 } ) = ( 𝐴 × { 1 } ) |
| 15 |
13 14
|
eqtri |
⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) = ( 𝐴 × { 1 } ) |
| 16 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 17 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , 1 , 0 ) = 0 ) |
| 18 |
17
|
sneqd |
⊢ ( ¬ 𝑥 ∈ 𝐴 → { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } = { 0 } ) |
| 19 |
16 18
|
syl |
⊢ ( 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) → { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } = { 0 } ) |
| 20 |
19
|
xpeq2d |
⊢ ( 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) → ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) = ( { 𝑥 } × { 0 } ) ) |
| 21 |
20
|
iuneq2i |
⊢ ∪ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) = ∪ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ( { 𝑥 } × { 0 } ) |
| 22 |
|
iunxpconst |
⊢ ∪ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ( { 𝑥 } × { 0 } ) = ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) |
| 23 |
21 22
|
eqtri |
⊢ ∪ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) = ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) |
| 24 |
15 23
|
uneq12i |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) ∪ ∪ 𝑥 ∈ ( 𝑂 ∖ 𝐴 ) ( { 𝑥 } × { if ( 𝑥 ∈ 𝐴 , 1 , 0 ) } ) ) = ( ( 𝐴 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) ) |
| 25 |
9 24
|
eqtrdi |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) = ( ( 𝐴 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝐴 ) × { 0 } ) ) ) |