Metamath Proof Explorer


Theorem indf1o

Description: The bijection between a power set and the set of indicator functions. (Contributed by Thierry Arnoux, 14-Aug-2017)

Ref Expression
Assertion indf1o OV𝟙O:𝒫O1-1 onto01O

Proof

Step Hyp Ref Expression
1 id OVOV
2 0red OV0
3 1red OV1
4 0ne1 01
5 4 a1i OV01
6 eqid a𝒫OxOifxa10=a𝒫OxOifxa10
7 1 2 3 5 6 pw2f1o OVa𝒫OxOifxa10:𝒫O1-1 onto01O
8 indv OV𝟙O=a𝒫OxOifxa10
9 8 f1oeq1d OV𝟙O:𝒫O1-1 onto01Oa𝒫OxOifxa10:𝒫O1-1 onto01O
10 7 9 mpbird OV𝟙O:𝒫O1-1 onto01O