Metamath Proof Explorer


Theorem indistpsALT

Description: The indiscrete topology on a set A expressed as a topological space. Here we show how to derive the structural version indistps from the direct component assignment version indistps2 . (Contributed by NM, 24-Oct-2012) (Revised by AV, 31-Oct-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses indistpsALT.a A V
indistpsALT.k K = Base ndx A TopSet ndx A
Assertion indistpsALT K TopSp

Proof

Step Hyp Ref Expression
1 indistpsALT.a A V
2 indistpsALT.k K = Base ndx A TopSet ndx A
3 indistopon A V A TopOn A
4 basendxlttsetndx Base ndx < TopSet ndx
5 tsetndxnn TopSet ndx
6 2 4 5 2strbas1 A V A = Base K
7 1 6 ax-mp A = Base K
8 prex A V
9 tsetid TopSet = Slot TopSet ndx
10 2 4 5 9 2strop1 A V A = TopSet K
11 8 10 ax-mp A = TopSet K
12 7 11 tsettps A TopOn A K TopSp
13 1 3 12 mp2b K TopSp