| Step | Hyp | Ref | Expression | 
						
							| 1 |  | indistpsALT.a |  |-  A e. _V | 
						
							| 2 |  | indistpsALT.k |  |-  K = { <. ( Base ` ndx ) , A >. , <. ( TopSet ` ndx ) , { (/) , A } >. } | 
						
							| 3 |  | indistopon |  |-  ( A e. _V -> { (/) , A } e. ( TopOn ` A ) ) | 
						
							| 4 |  | basendxlttsetndx |  |-  ( Base ` ndx ) < ( TopSet ` ndx ) | 
						
							| 5 |  | tsetndxnn |  |-  ( TopSet ` ndx ) e. NN | 
						
							| 6 | 2 4 5 | 2strbas1 |  |-  ( A e. _V -> A = ( Base ` K ) ) | 
						
							| 7 | 1 6 | ax-mp |  |-  A = ( Base ` K ) | 
						
							| 8 |  | prex |  |-  { (/) , A } e. _V | 
						
							| 9 |  | tsetid |  |-  TopSet = Slot ( TopSet ` ndx ) | 
						
							| 10 | 2 4 5 9 | 2strop1 |  |-  ( { (/) , A } e. _V -> { (/) , A } = ( TopSet ` K ) ) | 
						
							| 11 | 8 10 | ax-mp |  |-  { (/) , A } = ( TopSet ` K ) | 
						
							| 12 | 7 11 | tsettps |  |-  ( { (/) , A } e. ( TopOn ` A ) -> K e. TopSp ) | 
						
							| 13 | 1 3 12 | mp2b |  |-  K e. TopSp |