Metamath Proof Explorer


Theorem inelr

Description: The imaginary unit _i is not a real number. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion inelr ¬ i

Proof

Step Hyp Ref Expression
1 neg1lt0 1 < 0
2 neg1rr 1
3 0re 0
4 2 3 ltnsymi 1 < 0 ¬ 0 < 1
5 1 4 ax-mp ¬ 0 < 1
6 ixi i i = 1
7 6 breq2i 0 < i i 0 < 1
8 5 7 mtbir ¬ 0 < i i
9 ine0 i 0
10 msqgt0 i i 0 0 < i i
11 9 10 mpan2 i 0 < i i
12 8 11 mto ¬ i