Metamath Proof Explorer


Theorem inf3lemc

Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)

Ref Expression
Hypotheses inf3lem.1 G=yVwx|wxy
inf3lem.2 F=recGω
inf3lem.3 AV
inf3lem.4 BV
Assertion inf3lemc AωFsucA=GFA

Proof

Step Hyp Ref Expression
1 inf3lem.1 G=yVwx|wxy
2 inf3lem.2 F=recGω
3 inf3lem.3 AV
4 inf3lem.4 BV
5 frsuc AωrecGωsucA=GrecGωA
6 2 fveq1i FsucA=recGωsucA
7 2 fveq1i FA=recGωA
8 7 fveq2i GFA=GrecGωA
9 5 6 8 3eqtr4g AωFsucA=GFA