Metamath Proof Explorer


Theorem infpssrlem1

Description: Lemma for infpssr . (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Hypotheses infpssrlem.a φBA
infpssrlem.c φF:B1-1 ontoA
infpssrlem.d φCAB
infpssrlem.e G=recF-1Cω
Assertion infpssrlem1 φG=C

Proof

Step Hyp Ref Expression
1 infpssrlem.a φBA
2 infpssrlem.c φF:B1-1 ontoA
3 infpssrlem.d φCAB
4 infpssrlem.e G=recF-1Cω
5 4 fveq1i G=recF-1Cω
6 fr0g CABrecF-1Cω=C
7 3 6 syl φrecF-1Cω=C
8 5 7 eqtrid φG=C