Metamath Proof Explorer


Theorem infpssr

Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion infpssr XAXAωA

Proof

Step Hyp Ref Expression
1 pssnel XAyyA¬yX
2 1 adantr XAXAyyA¬yX
3 eldif yAXyA¬yX
4 pssss XAXA
5 bren XAff:X1-1 ontoA
6 simpr yAXXAf:X1-1 ontoAf:X1-1 ontoA
7 f1ofo f:X1-1 ontoAf:XontoA
8 forn f:XontoAranf=A
9 6 7 8 3syl yAXXAf:X1-1 ontoAranf=A
10 vex fV
11 10 rnex ranfV
12 9 11 eqeltrrdi yAXXAf:X1-1 ontoAAV
13 simplr yAXXAf:X1-1 ontoAXA
14 simpll yAXXAf:X1-1 ontoAyAX
15 eqid recf-1yω=recf-1yω
16 13 6 14 15 infpssrlem5 yAXXAf:X1-1 ontoAAVωA
17 12 16 mpd yAXXAf:X1-1 ontoAωA
18 17 ex yAXXAf:X1-1 ontoAωA
19 18 exlimdv yAXXAff:X1-1 ontoAωA
20 5 19 biimtrid yAXXAXAωA
21 20 ex yAXXAXAωA
22 4 21 syl5 yAXXAXAωA
23 22 impd yAXXAXAωA
24 3 23 sylbir yA¬yXXAXAωA
25 24 exlimiv yyA¬yXXAXAωA
26 2 25 mpcom XAXAωA