Metamath Proof Explorer


Theorem infpssr

Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion infpssr
|- ( ( X C. A /\ X ~~ A ) -> _om ~<_ A )

Proof

Step Hyp Ref Expression
1 pssnel
 |-  ( X C. A -> E. y ( y e. A /\ -. y e. X ) )
2 1 adantr
 |-  ( ( X C. A /\ X ~~ A ) -> E. y ( y e. A /\ -. y e. X ) )
3 eldif
 |-  ( y e. ( A \ X ) <-> ( y e. A /\ -. y e. X ) )
4 pssss
 |-  ( X C. A -> X C_ A )
5 bren
 |-  ( X ~~ A <-> E. f f : X -1-1-onto-> A )
6 simpr
 |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> f : X -1-1-onto-> A )
7 f1ofo
 |-  ( f : X -1-1-onto-> A -> f : X -onto-> A )
8 forn
 |-  ( f : X -onto-> A -> ran f = A )
9 6 7 8 3syl
 |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> ran f = A )
10 vex
 |-  f e. _V
11 10 rnex
 |-  ran f e. _V
12 9 11 eqeltrrdi
 |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> A e. _V )
13 simplr
 |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> X C_ A )
14 simpll
 |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> y e. ( A \ X ) )
15 eqid
 |-  ( rec ( `' f , y ) |` _om ) = ( rec ( `' f , y ) |` _om )
16 13 6 14 15 infpssrlem5
 |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> ( A e. _V -> _om ~<_ A ) )
17 12 16 mpd
 |-  ( ( ( y e. ( A \ X ) /\ X C_ A ) /\ f : X -1-1-onto-> A ) -> _om ~<_ A )
18 17 ex
 |-  ( ( y e. ( A \ X ) /\ X C_ A ) -> ( f : X -1-1-onto-> A -> _om ~<_ A ) )
19 18 exlimdv
 |-  ( ( y e. ( A \ X ) /\ X C_ A ) -> ( E. f f : X -1-1-onto-> A -> _om ~<_ A ) )
20 5 19 syl5bi
 |-  ( ( y e. ( A \ X ) /\ X C_ A ) -> ( X ~~ A -> _om ~<_ A ) )
21 20 ex
 |-  ( y e. ( A \ X ) -> ( X C_ A -> ( X ~~ A -> _om ~<_ A ) ) )
22 4 21 syl5
 |-  ( y e. ( A \ X ) -> ( X C. A -> ( X ~~ A -> _om ~<_ A ) ) )
23 22 impd
 |-  ( y e. ( A \ X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) )
24 3 23 sylbir
 |-  ( ( y e. A /\ -. y e. X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) )
25 24 exlimiv
 |-  ( E. y ( y e. A /\ -. y e. X ) -> ( ( X C. A /\ X ~~ A ) -> _om ~<_ A ) )
26 2 25 mpcom
 |-  ( ( X C. A /\ X ~~ A ) -> _om ~<_ A )