Metamath Proof Explorer


Theorem infrglb

Description: The infimum of a nonempty bounded set of reals is the greatest lower bound. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Assertion infrglb AAxyAxyBsupA<<BzAz<B

Proof

Step Hyp Ref Expression
1 ltso <Or
2 1 a1i AAxyAxy<Or
3 infm3 AAxyAxyxyA¬y<xyx<yzAz<y
4 simp1 AAxyAxyA
5 2 3 4 infglbb AAxyAxyBsupA<<BzAz<B