Metamath Proof Explorer


Theorem infsdomnnOLD

Description: Obsolete version of infsdomnn as of 7-Jan-2025. (Contributed by NM, 22-Nov-2004) (Revised by Mario Carneiro, 27-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion infsdomnnOLD ωABωBA

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex1i ωAωV
3 nnsdomg ωVBωBω
4 2 3 sylan ωABωBω
5 simpl ωABωωA
6 sdomdomtr BωωABA
7 4 5 6 syl2anc ωABωBA