Metamath Proof Explorer


Theorem infsdomnn

Description: An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion infsdomnn ω A B ω B A

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex1i ω A ω V
3 nnsdomg ω V B ω B ω
4 2 3 sylan ω A B ω B ω
5 simpl ω A B ω ω A
6 sdomdomtr B ω ω A B A
7 4 5 6 syl2anc ω A B ω B A