Metamath Proof Explorer


Theorem infssd

Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020)

Ref Expression
Hypotheses infssd.0 φROrA
infssd.1 φCB
infssd.3 φxAyC¬yRxyAxRyzCzRy
infssd.4 φxAyB¬yRxyAxRyzBzRy
Assertion infssd φ¬supCARRsupBAR

Proof

Step Hyp Ref Expression
1 infssd.0 φROrA
2 infssd.1 φCB
3 infssd.3 φxAyC¬yRxyAxRyzCzRy
4 infssd.4 φxAyB¬yRxyAxRyzBzRy
5 1 4 infcl φsupBARA
6 2 sseld φzCzB
7 1 4 inflb φzB¬zRsupBAR
8 6 7 syld φzC¬zRsupBAR
9 8 ralrimiv φzC¬zRsupBAR
10 1 3 infnlb φsupBARAzC¬zRsupBAR¬supCARRsupBAR
11 5 9 10 mp2and φ¬supCARRsupBAR