Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Relations and Functions
Supremum - misc additions
infssd
Next ⟩
Finite Sets
Metamath Proof Explorer
Ascii
Unicode
Theorem
infssd
Description:
Inequality deduction for infimum of a subset.
(Contributed by
AV
, 4-Oct-2020)
Ref
Expression
Hypotheses
infssd.0
⊢
φ
→
R
Or
A
infssd.1
⊢
φ
→
C
⊆
B
infssd.3
⊢
φ
→
∃
x
∈
A
∀
y
∈
C
¬
y
R
x
∧
∀
y
∈
A
x
R
y
→
∃
z
∈
C
z
R
y
infssd.4
⊢
φ
→
∃
x
∈
A
∀
y
∈
B
¬
y
R
x
∧
∀
y
∈
A
x
R
y
→
∃
z
∈
B
z
R
y
Assertion
infssd
⊢
φ
→
¬
sup
C
A
R
R
sup
B
A
R
Proof
Step
Hyp
Ref
Expression
1
infssd.0
⊢
φ
→
R
Or
A
2
infssd.1
⊢
φ
→
C
⊆
B
3
infssd.3
⊢
φ
→
∃
x
∈
A
∀
y
∈
C
¬
y
R
x
∧
∀
y
∈
A
x
R
y
→
∃
z
∈
C
z
R
y
4
infssd.4
⊢
φ
→
∃
x
∈
A
∀
y
∈
B
¬
y
R
x
∧
∀
y
∈
A
x
R
y
→
∃
z
∈
B
z
R
y
5
1
4
infcl
⊢
φ
→
sup
B
A
R
∈
A
6
2
sseld
⊢
φ
→
z
∈
C
→
z
∈
B
7
1
4
inflb
⊢
φ
→
z
∈
B
→
¬
z
R
sup
B
A
R
8
6
7
syld
⊢
φ
→
z
∈
C
→
¬
z
R
sup
B
A
R
9
8
ralrimiv
⊢
φ
→
∀
z
∈
C
¬
z
R
sup
B
A
R
10
1
3
infnlb
⊢
φ
→
sup
B
A
R
∈
A
∧
∀
z
∈
C
¬
z
R
sup
B
A
R
→
¬
sup
C
A
R
R
sup
B
A
R
11
5
9
10
mp2and
⊢
φ
→
¬
sup
C
A
R
R
sup
B
A
R