Step |
Hyp |
Ref |
Expression |
1 |
|
infssd.0 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
2 |
|
infssd.1 |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
3 |
|
infssd.3 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐶 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐶 𝑧 𝑅 𝑦 ) ) ) |
4 |
|
infssd.4 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
5 |
1 4
|
infcl |
⊢ ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ) |
6 |
2
|
sseld |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵 ) ) |
7 |
1 4
|
inflb |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐵 → ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
8 |
6 7
|
syld |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐶 → ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
9 |
8
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐶 ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) |
10 |
1 3
|
infnlb |
⊢ ( 𝜑 → ( ( inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐶 ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) → ¬ inf ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |
11 |
5 9 10
|
mp2and |
⊢ ( 𝜑 → ¬ inf ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) |