Metamath Proof Explorer


Theorem infssd

Description: Inequality deduction for infimum of a subset. (Contributed by AV, 4-Oct-2020)

Ref Expression
Hypotheses infssd.0 ( 𝜑𝑅 Or 𝐴 )
infssd.1 ( 𝜑𝐶𝐵 )
infssd.3 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐶 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐶 𝑧 𝑅 𝑦 ) ) )
infssd.4 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
Assertion infssd ( 𝜑 → ¬ inf ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) )

Proof

Step Hyp Ref Expression
1 infssd.0 ( 𝜑𝑅 Or 𝐴 )
2 infssd.1 ( 𝜑𝐶𝐵 )
3 infssd.3 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐶 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐶 𝑧 𝑅 𝑦 ) ) )
4 infssd.4 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
5 1 4 infcl ( 𝜑 → inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 )
6 2 sseld ( 𝜑 → ( 𝑧𝐶𝑧𝐵 ) )
7 1 4 inflb ( 𝜑 → ( 𝑧𝐵 → ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) )
8 6 7 syld ( 𝜑 → ( 𝑧𝐶 → ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) )
9 8 ralrimiv ( 𝜑 → ∀ 𝑧𝐶 ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) )
10 1 3 infnlb ( 𝜑 → ( ( inf ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 ∧ ∀ 𝑧𝐶 ¬ 𝑧 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) → ¬ inf ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) )
11 5 9 10 mp2and ( 𝜑 → ¬ inf ( 𝐶 , 𝐴 , 𝑅 ) 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) )