Metamath Proof Explorer


Theorem infnlb

Description: A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 ( 𝜑𝑅 Or 𝐴 )
infcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
Assertion infnlb ( 𝜑 → ( ( 𝐶𝐴 ∧ ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝐶 ) → ¬ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 infcl.1 ( 𝜑𝑅 Or 𝐴 )
2 infcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
3 1 2 infglb ( 𝜑 → ( ( 𝐶𝐴 ∧ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) → ∃ 𝑧𝐵 𝑧 𝑅 𝐶 ) )
4 3 expdimp ( ( 𝜑𝐶𝐴 ) → ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 → ∃ 𝑧𝐵 𝑧 𝑅 𝐶 ) )
5 dfrex2 ( ∃ 𝑧𝐵 𝑧 𝑅 𝐶 ↔ ¬ ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝐶 )
6 4 5 syl6ib ( ( 𝜑𝐶𝐴 ) → ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 → ¬ ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝐶 ) )
7 6 con2d ( ( 𝜑𝐶𝐴 ) → ( ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝐶 → ¬ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )
8 7 expimpd ( 𝜑 → ( ( 𝐶𝐴 ∧ ∀ 𝑧𝐵 ¬ 𝑧 𝑅 𝐶 ) → ¬ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )