| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infcl.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
| 2 |
|
infcl.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
| 3 |
1 2
|
infglb |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |
| 4 |
3
|
expdimp |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ) ) |
| 5 |
|
dfrex2 |
⊢ ( ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝐶 ↔ ¬ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 ) |
| 6 |
4 5
|
imbitrdi |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 → ¬ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 ) ) |
| 7 |
6
|
con2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 → ¬ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |
| 8 |
7
|
expimpd |
⊢ ( 𝜑 → ( ( 𝐶 ∈ 𝐴 ∧ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝐶 ) → ¬ inf ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) ) |