Step |
Hyp |
Ref |
Expression |
1 |
|
infcl.1 |
⊢ ( 𝜑 → 𝑅 Or 𝐴 ) |
2 |
|
infcl.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧 ∈ 𝐵 𝑧 𝑅 𝑦 ) ) ) |
3 |
|
cnvso |
⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |
4 |
1 3
|
sylib |
⊢ ( 𝜑 → ◡ 𝑅 Or 𝐴 ) |
5 |
1 2
|
infcllem |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 ¬ 𝑥 ◡ 𝑅 𝑦 ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 → ∃ 𝑧 ∈ 𝐵 𝑦 ◡ 𝑅 𝑧 ) ) ) |
6 |
4 5
|
supub |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 → ¬ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) ) |
7 |
6
|
imp |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ¬ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) |
8 |
|
df-inf |
⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) |
9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) |
10 |
9
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ↔ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) ) |
11 |
4 5
|
supcl |
⊢ ( 𝜑 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ) |
12 |
|
brcnvg |
⊢ ( ( sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ↔ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ) ) |
13 |
12
|
bicomd |
⊢ ( ( sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ∈ 𝐴 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) ) |
14 |
11 13
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) ) |
15 |
10 14
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) ◡ 𝑅 𝐶 ) ) |
16 |
7 15
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ¬ 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( 𝐶 ∈ 𝐵 → ¬ 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) ) |