Metamath Proof Explorer


Theorem inflb

Description: An infimum is a lower bound. See also infcl and infglb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 ( 𝜑𝑅 Or 𝐴 )
infcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
Assertion inflb ( 𝜑 → ( 𝐶𝐵 → ¬ 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 infcl.1 ( 𝜑𝑅 Or 𝐴 )
2 infcl.2 ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑦 𝑅 𝑥 ∧ ∀ 𝑦𝐴 ( 𝑥 𝑅 𝑦 → ∃ 𝑧𝐵 𝑧 𝑅 𝑦 ) ) )
3 cnvso ( 𝑅 Or 𝐴 𝑅 Or 𝐴 )
4 1 3 sylib ( 𝜑 𝑅 Or 𝐴 )
5 1 2 infcllem ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 ¬ 𝑥 𝑅 𝑦 ∧ ∀ 𝑦𝐴 ( 𝑦 𝑅 𝑥 → ∃ 𝑧𝐵 𝑦 𝑅 𝑧 ) ) )
6 4 5 supub ( 𝜑 → ( 𝐶𝐵 → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )
7 6 imp ( ( 𝜑𝐶𝐵 ) → ¬ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 )
8 df-inf inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , 𝑅 )
9 8 a1i ( ( 𝜑𝐶𝐵 ) → inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , 𝑅 ) )
10 9 breq2d ( ( 𝜑𝐶𝐵 ) → ( 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ↔ 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) )
11 4 5 supcl ( 𝜑 → sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴 )
12 brcnvg ( ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴𝐶𝐵 ) → ( sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ) )
13 12 bicomd ( ( sup ( 𝐵 , 𝐴 , 𝑅 ) ∈ 𝐴𝐶𝐵 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )
14 11 13 sylan ( ( 𝜑𝐶𝐵 ) → ( 𝐶 𝑅 sup ( 𝐵 , 𝐴 , 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )
15 10 14 bitrd ( ( 𝜑𝐶𝐵 ) → ( 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ↔ sup ( 𝐵 , 𝐴 , 𝑅 ) 𝑅 𝐶 ) )
16 7 15 mtbird ( ( 𝜑𝐶𝐵 ) → ¬ 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) )
17 16 ex ( 𝜑 → ( 𝐶𝐵 → ¬ 𝐶 𝑅 inf ( 𝐵 , 𝐴 , 𝑅 ) ) )