Step |
Hyp |
Ref |
Expression |
1 |
|
infcl.1 |
|- ( ph -> R Or A ) |
2 |
|
infcl.2 |
|- ( ph -> E. x e. A ( A. y e. B -. y R x /\ A. y e. A ( x R y -> E. z e. B z R y ) ) ) |
3 |
|
cnvso |
|- ( R Or A <-> `' R Or A ) |
4 |
1 3
|
sylib |
|- ( ph -> `' R Or A ) |
5 |
1 2
|
infcllem |
|- ( ph -> E. x e. A ( A. y e. B -. x `' R y /\ A. y e. A ( y `' R x -> E. z e. B y `' R z ) ) ) |
6 |
4 5
|
supub |
|- ( ph -> ( C e. B -> -. sup ( B , A , `' R ) `' R C ) ) |
7 |
6
|
imp |
|- ( ( ph /\ C e. B ) -> -. sup ( B , A , `' R ) `' R C ) |
8 |
|
df-inf |
|- inf ( B , A , R ) = sup ( B , A , `' R ) |
9 |
8
|
a1i |
|- ( ( ph /\ C e. B ) -> inf ( B , A , R ) = sup ( B , A , `' R ) ) |
10 |
9
|
breq2d |
|- ( ( ph /\ C e. B ) -> ( C R inf ( B , A , R ) <-> C R sup ( B , A , `' R ) ) ) |
11 |
4 5
|
supcl |
|- ( ph -> sup ( B , A , `' R ) e. A ) |
12 |
|
brcnvg |
|- ( ( sup ( B , A , `' R ) e. A /\ C e. B ) -> ( sup ( B , A , `' R ) `' R C <-> C R sup ( B , A , `' R ) ) ) |
13 |
12
|
bicomd |
|- ( ( sup ( B , A , `' R ) e. A /\ C e. B ) -> ( C R sup ( B , A , `' R ) <-> sup ( B , A , `' R ) `' R C ) ) |
14 |
11 13
|
sylan |
|- ( ( ph /\ C e. B ) -> ( C R sup ( B , A , `' R ) <-> sup ( B , A , `' R ) `' R C ) ) |
15 |
10 14
|
bitrd |
|- ( ( ph /\ C e. B ) -> ( C R inf ( B , A , R ) <-> sup ( B , A , `' R ) `' R C ) ) |
16 |
7 15
|
mtbird |
|- ( ( ph /\ C e. B ) -> -. C R inf ( B , A , R ) ) |
17 |
16
|
ex |
|- ( ph -> ( C e. B -> -. C R inf ( B , A , R ) ) ) |