Metamath Proof Explorer


Theorem infxpenc2lem3

Description: Lemma for infxpenc2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 7-Jul-2019)

Ref Expression
Hypotheses infxpenc2.1 φAOn
infxpenc2.2 φbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
infxpenc2.3 W=xOn1𝑜ω𝑜x-1rannb
infxpenc2.4 φF:ω𝑜2𝑜1-1 ontoω
infxpenc2.5 φF=
Assertion infxpenc2lem3 φgbAωbgb:b×b1-1 ontob

Proof

Step Hyp Ref Expression
1 infxpenc2.1 φAOn
2 infxpenc2.2 φbAωbwOn1𝑜nb:b1-1 ontoω𝑜w
3 infxpenc2.3 W=xOn1𝑜ω𝑜x-1rannb
4 infxpenc2.4 φF:ω𝑜2𝑜1-1 ontoω
5 infxpenc2.5 φF=
6 eqid yxω𝑜2𝑜W|finSuppxFyIW-1=yxω𝑜2𝑜W|finSuppxFyIW-1
7 eqid ωCNFWyxω𝑜2𝑜W|finSuppxFyIW-1ω𝑜2𝑜CNFW-1=ωCNFWyxω𝑜2𝑜W|finSuppxFyIW-1ω𝑜2𝑜CNFW-1
8 eqid yxωW𝑜2𝑜|finSuppxIωyz2𝑜,wW2𝑜𝑜w+𝑜zz2𝑜,wWW𝑜z+𝑜w-1-1=yxωW𝑜2𝑜|finSuppxIωyz2𝑜,wW2𝑜𝑜w+𝑜zz2𝑜,wWW𝑜z+𝑜w-1-1
9 eqid z2𝑜,wWW𝑜z+𝑜w=z2𝑜,wWW𝑜z+𝑜w
10 eqid z2𝑜,wW2𝑜𝑜w+𝑜z=z2𝑜,wW2𝑜𝑜w+𝑜z
11 eqid ωCNF2𝑜𝑜WyxωW𝑜2𝑜|finSuppxIωyz2𝑜,wW2𝑜𝑜w+𝑜zz2𝑜,wWW𝑜z+𝑜w-1-1ωCNFW𝑜2𝑜-1=ωCNF2𝑜𝑜WyxωW𝑜2𝑜|finSuppxIωyz2𝑜,wW2𝑜𝑜w+𝑜zz2𝑜,wWW𝑜z+𝑜w-1-1ωCNFW𝑜2𝑜-1
12 eqid xω𝑜W,yω𝑜Wω𝑜W𝑜x+𝑜y=xω𝑜W,yω𝑜Wω𝑜W𝑜x+𝑜y
13 eqid xb,ybnbxnby=xb,ybnbxnby
14 eqid nb-1ωCNFWyxω𝑜2𝑜W|finSuppxFyIW-1ω𝑜2𝑜CNFW-1ωCNF2𝑜𝑜WyxωW𝑜2𝑜|finSuppxIωyz2𝑜,wW2𝑜𝑜w+𝑜zz2𝑜,wWW𝑜z+𝑜w-1-1ωCNFW𝑜2𝑜-1xω𝑜W,yω𝑜Wω𝑜W𝑜x+𝑜yxb,ybnbxnby=nb-1ωCNFWyxω𝑜2𝑜W|finSuppxFyIW-1ω𝑜2𝑜CNFW-1ωCNF2𝑜𝑜WyxωW𝑜2𝑜|finSuppxIωyz2𝑜,wW2𝑜𝑜w+𝑜zz2𝑜,wWW𝑜z+𝑜w-1-1ωCNFW𝑜2𝑜-1xω𝑜W,yω𝑜Wω𝑜W𝑜x+𝑜yxb,ybnbxnby
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 infxpenc2lem2 φgbAωbgb:b×b1-1 ontob