Metamath Proof Explorer


Theorem iniin1

Description: Indexed intersection of intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion iniin1 A x A C B = x A C B

Proof

Step Hyp Ref Expression
1 iinin1 A x A C B = x A C B
2 1 eqcomd A x A C B = x A C B