Metamath Proof Explorer


Theorem initoo

Description: An initial object is an object. (Contributed by AV, 14-Apr-2020)

Ref Expression
Assertion initoo C Cat O InitO C O Base C

Proof

Step Hyp Ref Expression
1 eqid Base C = Base C
2 eqid Hom C = Hom C
3 id C Cat C Cat
4 1 2 3 isinitoi C Cat O InitO C O Base C b Base C ∃! h h O Hom C b
5 4 simpld C Cat O InitO C O Base C
6 5 ex C Cat O InitO C O Base C