Metamath Proof Explorer


Theorem initoo2

Description: An initial object is an object in the base set. (Contributed by Zhi Wang, 23-Oct-2025)

Ref Expression
Hypothesis initoo2.b B = Base C
Assertion initoo2 O InitO C O B

Proof

Step Hyp Ref Expression
1 initoo2.b B = Base C
2 eqid Hom C = Hom C
3 initorcl O InitO C C Cat
4 1 2 3 isinitoi O InitO C O InitO C O B b B ∃! h h O Hom C b
5 4 anidms O InitO C O B b B ∃! h h O Hom C b
6 5 simpld O InitO C O B