Metamath Proof Explorer


Theorem inopab

Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion inopab xy|φxy|ψ=xy|φψ

Proof

Step Hyp Ref Expression
1 relopabv Relxy|φ
2 relin1 Relxy|φRelxy|φxy|ψ
3 1 2 ax-mp Relxy|φxy|ψ
4 relopabv Relxy|φψ
5 sban zxwyφwyψzxwyφzxwyψ
6 sban wyφψwyφwyψ
7 6 sbbii zxwyφψzxwyφwyψ
8 vopelopabsb zwxy|φzxwyφ
9 vopelopabsb zwxy|ψzxwyψ
10 8 9 anbi12i zwxy|φzwxy|ψzxwyφzxwyψ
11 5 7 10 3bitr4ri zwxy|φzwxy|ψzxwyφψ
12 elin zwxy|φxy|ψzwxy|φzwxy|ψ
13 vopelopabsb zwxy|φψzxwyφψ
14 11 12 13 3bitr4i zwxy|φxy|ψzwxy|φψ
15 3 4 14 eqrelriiv xy|φxy|ψ=xy|φψ