Metamath Proof Explorer


Theorem intimasn

Description: Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020)

Ref Expression
Assertion intimasn BVAB=x|aAx=aB

Proof

Step Hyp Ref Expression
1 ax-5 BVyBV
2 r19.12sn BVbBaAbyaaAbBbya
3 2 biimprd BVaAbBbyabBaAbya
4 3 alimi yBVyaAbBbyabBaAbya
5 intimag yaAbBbyabBaAbyaAB=x|aAx=aB
6 1 4 5 3syl BVAB=x|aAx=aB