Metamath Proof Explorer


Theorem intss

Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Assertion intss ABBA

Proof

Step Hyp Ref Expression
1 ssralv ABxByxxAyx
2 1 ss2abdv ABy|xByxy|xAyx
3 dfint2 B=y|xByx
4 dfint2 A=y|xAyx
5 2 3 4 3sstr4g ABBA