Metamath Proof Explorer


Theorem invrcn

Description: The multiplicative inverse function is a continuous function from the unit group (that is, the nonzero numbers) to the field. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J=TopOpenR
invrcn.i I=invrR
invrcn.u U=UnitR
Assertion invrcn RTopDRingIJ𝑡UCnJ

Proof

Step Hyp Ref Expression
1 mulrcn.j J=TopOpenR
2 invrcn.i I=invrR
3 invrcn.u U=UnitR
4 tdrgtps RTopDRingRTopSp
5 1 tpstop RTopSpJTop
6 cnrest2r JTopJ𝑡UCnJ𝑡UJ𝑡UCnJ
7 4 5 6 3syl RTopDRingJ𝑡UCnJ𝑡UJ𝑡UCnJ
8 1 2 3 invrcn2 RTopDRingIJ𝑡UCnJ𝑡U
9 7 8 sseldd RTopDRingIJ𝑡UCnJ