Metamath Proof Explorer
		
		
		
		Description:  Miscellaneous inference creating a biconditional from an implied
       converse implication.  (Contributed by Steven Nguyen, 17-Jul-2022)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | ioin9i8.1 |  | 
					
						|  |  | ioin9i8.2 |  | 
					
						|  |  | ioin9i8.3 |  | 
				
					|  | Assertion | ioin9i8 |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ioin9i8.1 |  | 
						
							| 2 |  | ioin9i8.2 |  | 
						
							| 3 |  | ioin9i8.3 |  | 
						
							| 4 | 1 | ord |  | 
						
							| 5 | 4 2 | syl6 |  | 
						
							| 6 | 5 | con4d |  | 
						
							| 7 | 3 6 | impbid2 |  |