Metamath Proof Explorer


Theorem ioin9i8

Description: Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Hypotheses ioin9i8.1 φ ψ χ
ioin9i8.2 χ ¬ θ
ioin9i8.3 ψ θ
Assertion ioin9i8 φ ψ θ

Proof

Step Hyp Ref Expression
1 ioin9i8.1 φ ψ χ
2 ioin9i8.2 χ ¬ θ
3 ioin9i8.3 ψ θ
4 1 ord φ ¬ ψ χ
5 4 2 syl6 φ ¬ ψ ¬ θ
6 5 con4d φ θ ψ
7 3 6 impbid2 φ ψ θ