Metamath Proof Explorer
Description: Miscellaneous inference creating a biconditional from an implied
converse implication. (Contributed by Steven Nguyen, 17-Jul-2022)
|
|
Ref |
Expression |
|
Hypotheses |
ioin9i8.1 |
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) |
|
|
ioin9i8.2 |
⊢ ( 𝜒 → ¬ 𝜃 ) |
|
|
ioin9i8.3 |
⊢ ( 𝜓 → 𝜃 ) |
|
Assertion |
ioin9i8 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ioin9i8.1 |
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) |
| 2 |
|
ioin9i8.2 |
⊢ ( 𝜒 → ¬ 𝜃 ) |
| 3 |
|
ioin9i8.3 |
⊢ ( 𝜓 → 𝜃 ) |
| 4 |
1
|
ord |
⊢ ( 𝜑 → ( ¬ 𝜓 → 𝜒 ) ) |
| 5 |
4 2
|
syl6 |
⊢ ( 𝜑 → ( ¬ 𝜓 → ¬ 𝜃 ) ) |
| 6 |
5
|
con4d |
⊢ ( 𝜑 → ( 𝜃 → 𝜓 ) ) |
| 7 |
3 6
|
impbid2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) ) |