Metamath Proof Explorer


Theorem ioin9i8

Description: Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Hypotheses ioin9i8.1 ( 𝜑 → ( 𝜓𝜒 ) )
ioin9i8.2 ( 𝜒 → ¬ 𝜃 )
ioin9i8.3 ( 𝜓𝜃 )
Assertion ioin9i8 ( 𝜑 → ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 ioin9i8.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ioin9i8.2 ( 𝜒 → ¬ 𝜃 )
3 ioin9i8.3 ( 𝜓𝜃 )
4 1 ord ( 𝜑 → ( ¬ 𝜓𝜒 ) )
5 4 2 syl6 ( 𝜑 → ( ¬ 𝜓 → ¬ 𝜃 ) )
6 5 con4d ( 𝜑 → ( 𝜃𝜓 ) )
7 3 6 impbid2 ( 𝜑 → ( 𝜓𝜃 ) )