Description: Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ioin9i8.1 | |- ( ph -> ( ps \/ ch ) ) |
|
ioin9i8.2 | |- ( ch -> -. th ) |
||
ioin9i8.3 | |- ( ps -> th ) |
||
Assertion | ioin9i8 | |- ( ph -> ( ps <-> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioin9i8.1 | |- ( ph -> ( ps \/ ch ) ) |
|
2 | ioin9i8.2 | |- ( ch -> -. th ) |
|
3 | ioin9i8.3 | |- ( ps -> th ) |
|
4 | 1 | ord | |- ( ph -> ( -. ps -> ch ) ) |
5 | 4 2 | syl6 | |- ( ph -> ( -. ps -> -. th ) ) |
6 | 5 | con4d | |- ( ph -> ( th -> ps ) ) |
7 | 3 6 | impbid2 | |- ( ph -> ( ps <-> th ) ) |