Metamath Proof Explorer


Theorem ioin9i8

Description: Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022)

Ref Expression
Hypotheses ioin9i8.1
|- ( ph -> ( ps \/ ch ) )
ioin9i8.2
|- ( ch -> -. th )
ioin9i8.3
|- ( ps -> th )
Assertion ioin9i8
|- ( ph -> ( ps <-> th ) )

Proof

Step Hyp Ref Expression
1 ioin9i8.1
 |-  ( ph -> ( ps \/ ch ) )
2 ioin9i8.2
 |-  ( ch -> -. th )
3 ioin9i8.3
 |-  ( ps -> th )
4 1 ord
 |-  ( ph -> ( -. ps -> ch ) )
5 4 2 syl6
 |-  ( ph -> ( -. ps -> -. th ) )
6 5 con4d
 |-  ( ph -> ( th -> ps ) )
7 3 6 impbid2
 |-  ( ph -> ( ps <-> th ) )