Metamath Proof Explorer


Theorem ioogtlbd

Description: An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ioogtlbd.1 φA*
ioogtlbd.2 φB*
ioogtlbd.3 φCAB
Assertion ioogtlbd φA<C

Proof

Step Hyp Ref Expression
1 ioogtlbd.1 φA*
2 ioogtlbd.2 φB*
3 ioogtlbd.3 φCAB
4 ioogtlb A*B*CABA<C
5 1 2 3 4 syl3anc φA<C