Metamath Proof Explorer


Theorem iota2d

Description: A condition that allows to represent "the unique element such that ph " with a class expression A . (Contributed by NM, 30-Dec-2014)

Ref Expression
Hypotheses iota2df.1 φBV
iota2df.2 φ∃!xψ
iota2df.3 φx=Bψχ
Assertion iota2d φχιx|ψ=B

Proof

Step Hyp Ref Expression
1 iota2df.1 φBV
2 iota2df.2 φ∃!xψ
3 iota2df.3 φx=Bψχ
4 nfv xφ
5 nfvd φxχ
6 nfcvd φ_xB
7 1 2 3 4 5 6 iota2df φχιx|ψ=B