Metamath Proof Explorer


Theorem iota2df

Description: A condition that allows to represent "the unique element such that ph " with a class expression A . (Contributed by NM, 30-Dec-2014)

Ref Expression
Hypotheses iota2df.1 φBV
iota2df.2 φ∃!xψ
iota2df.3 φx=Bψχ
iota2df.4 xφ
iota2df.5 φxχ
iota2df.6 φ_xB
Assertion iota2df φχιx|ψ=B

Proof

Step Hyp Ref Expression
1 iota2df.1 φBV
2 iota2df.2 φ∃!xψ
3 iota2df.3 φx=Bψχ
4 iota2df.4 xφ
5 iota2df.5 φxχ
6 iota2df.6 φ_xB
7 simpr φx=Bx=B
8 7 eqeq2d φx=Bιx|ψ=xιx|ψ=B
9 3 8 bibi12d φx=Bψιx|ψ=xχιx|ψ=B
10 iota1 ∃!xψψιx|ψ=x
11 2 10 syl φψιx|ψ=x
12 nfiota1 _xιx|ψ
13 12 a1i φ_xιx|ψ
14 13 6 nfeqd φxιx|ψ=B
15 5 14 nfbid φxχιx|ψ=B
16 1 9 11 4 6 15 vtocldf φχιx|ψ=B