Description: Theorem *14.202 in WhiteheadRussell p. 189. A biconditional version of iotaval . (Contributed by Andrew Salmon, 11-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | iotavalb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotaval | |
|
2 | iotasbc | |
|
3 | iotaexeu | |
|
4 | eqsbc1 | |
|
5 | 3 4 | syl | |
6 | 2 5 | bitr3d | |
7 | equequ2 | |
|
8 | 7 | bibi2d | |
9 | 8 | albidv | |
10 | 9 | biimpac | |
11 | 10 | exlimiv | |
12 | 6 11 | syl6bir | |
13 | 1 12 | impbid2 | |