Metamath Proof Explorer


Theorem iotavalb

Description: Theorem *14.202 in WhiteheadRussell p. 189. A biconditional version of iotaval . (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotavalb ∃!xφxφx=yιx|φ=y

Proof

Step Hyp Ref Expression
1 iotaval xφx=yιx|φ=y
2 iotasbc ∃!xφ[˙ιx|φ/z]˙z=yzxφx=zz=y
3 iotaexeu ∃!xφιx|φV
4 eqsbc1 ιx|φV[˙ιx|φ/z]˙z=yιx|φ=y
5 3 4 syl ∃!xφ[˙ιx|φ/z]˙z=yιx|φ=y
6 2 5 bitr3d ∃!xφzxφx=zz=yιx|φ=y
7 equequ2 z=yx=zx=y
8 7 bibi2d z=yφx=zφx=y
9 8 albidv z=yxφx=zxφx=y
10 9 biimpac xφx=zz=yxφx=y
11 10 exlimiv zxφx=zz=yxφx=y
12 6 11 syl6bir ∃!xφιx|φ=yxφx=y
13 1 12 impbid2 ∃!xφxφx=yιx|φ=y