Metamath Proof Explorer


Theorem ipfeq

Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ipffval.1 V=BaseW
ipffval.2 ,˙=𝑖W
ipffval.3 ·˙=ifW
Assertion ipfeq ,˙FnV×V·˙=,˙

Proof

Step Hyp Ref Expression
1 ipffval.1 V=BaseW
2 ipffval.2 ,˙=𝑖W
3 ipffval.3 ·˙=ifW
4 1 2 3 ipffval ·˙=xV,yVx,˙y
5 fnov ,˙FnV×V,˙=xV,yVx,˙y
6 5 biimpi ,˙FnV×V,˙=xV,yVx,˙y
7 4 6 eqtr4id ,˙FnV×V·˙=,˙