Metamath Proof Explorer


Theorem ipfeq

Description: If the inner product operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ipffval.1
|- V = ( Base ` W )
ipffval.2
|- ., = ( .i ` W )
ipffval.3
|- .x. = ( .if ` W )
Assertion ipfeq
|- ( ., Fn ( V X. V ) -> .x. = ., )

Proof

Step Hyp Ref Expression
1 ipffval.1
 |-  V = ( Base ` W )
2 ipffval.2
 |-  ., = ( .i ` W )
3 ipffval.3
 |-  .x. = ( .if ` W )
4 1 2 3 ipffval
 |-  .x. = ( x e. V , y e. V |-> ( x ., y ) )
5 fnov
 |-  ( ., Fn ( V X. V ) <-> ., = ( x e. V , y e. V |-> ( x ., y ) ) )
6 5 biimpi
 |-  ( ., Fn ( V X. V ) -> ., = ( x e. V , y e. V |-> ( x ., y ) ) )
7 4 6 eqtr4id
 |-  ( ., Fn ( V X. V ) -> .x. = ., )