Metamath Proof Explorer


Theorem ipffn

Description: The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses ipffn.1 V=BaseW
ipffn.2 ,˙=ifW
Assertion ipffn ,˙FnV×V

Proof

Step Hyp Ref Expression
1 ipffn.1 V=BaseW
2 ipffn.2 ,˙=ifW
3 eqid 𝑖W=𝑖W
4 1 3 2 ipffval ,˙=xV,yVx𝑖Wy
5 ovex x𝑖WyV
6 4 5 fnmpoi ,˙FnV×V