Metamath Proof Explorer


Theorem ipfval

Description: The inner product operation as a function. (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Hypotheses ipffval.1 V=BaseW
ipffval.2 ,˙=𝑖W
ipffval.3 ·˙=ifW
Assertion ipfval XVYVX·˙Y=X,˙Y

Proof

Step Hyp Ref Expression
1 ipffval.1 V=BaseW
2 ipffval.2 ,˙=𝑖W
3 ipffval.3 ·˙=ifW
4 oveq12 x=Xy=Yx,˙y=X,˙Y
5 1 2 3 ipffval ·˙=xV,yVx,˙y
6 ovex X,˙YV
7 4 5 6 ovmpoa XVYVX·˙Y=X,˙Y