Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Equilateral triangles
iseqlgd
Next ⟩
Properties of geometries
Metamath Proof Explorer
Ascii
Unicode
Theorem
iseqlgd
Description:
Condition for a triangle to be equilateral.
(Contributed by
Thierry Arnoux
, 5-Oct-2020)
Ref
Expression
Hypotheses
iseqlg.p
⊢
P
=
Base
G
iseqlg.m
⊢
-
˙
=
dist
⁡
G
iseqlg.i
⊢
I
=
Itv
⁡
G
iseqlg.l
⊢
L
=
Line
𝒢
⁡
G
iseqlg.g
⊢
φ
→
G
∈
𝒢
Tarski
iseqlg.a
⊢
φ
→
A
∈
P
iseqlg.b
⊢
φ
→
B
∈
P
iseqlg.c
⊢
φ
→
C
∈
P
iseqlgd.1
⊢
φ
→
A
-
˙
B
=
B
-
˙
C
iseqlgd.2
⊢
φ
→
B
-
˙
C
=
C
-
˙
A
iseqlgd.3
⊢
φ
→
C
-
˙
A
=
A
-
˙
B
Assertion
iseqlgd
⊢
φ
→
〈“
A
B
C
”〉
∈
Equilaterals
𝒢
⁡
G
Proof
Step
Hyp
Ref
Expression
1
iseqlg.p
⊢
P
=
Base
G
2
iseqlg.m
⊢
-
˙
=
dist
⁡
G
3
iseqlg.i
⊢
I
=
Itv
⁡
G
4
iseqlg.l
⊢
L
=
Line
𝒢
⁡
G
5
iseqlg.g
⊢
φ
→
G
∈
𝒢
Tarski
6
iseqlg.a
⊢
φ
→
A
∈
P
7
iseqlg.b
⊢
φ
→
B
∈
P
8
iseqlg.c
⊢
φ
→
C
∈
P
9
iseqlgd.1
⊢
φ
→
A
-
˙
B
=
B
-
˙
C
10
iseqlgd.2
⊢
φ
→
B
-
˙
C
=
C
-
˙
A
11
iseqlgd.3
⊢
φ
→
C
-
˙
A
=
A
-
˙
B
12
eqid
⊢
∼
𝒢
⁡
G
=
∼
𝒢
⁡
G
13
1
2
12
5
6
7
8
7
8
6
9
10
11
trgcgr
⊢
φ
→
〈“
A
B
C
”〉
∼
𝒢
⁡
G
〈“
B
C
A
”〉
14
1
2
3
4
5
6
7
8
iseqlg
⊢
φ
→
〈“
A
B
C
”〉
∈
Equilaterals
𝒢
⁡
G
↔
〈“
A
B
C
”〉
∼
𝒢
⁡
G
〈“
B
C
A
”〉
15
13
14
mpbird
⊢
φ
→
〈“
A
B
C
”〉
∈
Equilaterals
𝒢
⁡
G