Metamath Proof Explorer


Theorem iseqlgd

Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses iseqlg.p 𝑃 = ( Base ‘ 𝐺 )
iseqlg.m = ( dist ‘ 𝐺 )
iseqlg.i 𝐼 = ( Itv ‘ 𝐺 )
iseqlg.l 𝐿 = ( LineG ‘ 𝐺 )
iseqlg.g ( 𝜑𝐺 ∈ TarskiG )
iseqlg.a ( 𝜑𝐴𝑃 )
iseqlg.b ( 𝜑𝐵𝑃 )
iseqlg.c ( 𝜑𝐶𝑃 )
iseqlgd.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐵 𝐶 ) )
iseqlgd.2 ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐶 𝐴 ) )
iseqlgd.3 ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐴 𝐵 ) )
Assertion iseqlgd ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( eqltrG ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 iseqlg.p 𝑃 = ( Base ‘ 𝐺 )
2 iseqlg.m = ( dist ‘ 𝐺 )
3 iseqlg.i 𝐼 = ( Itv ‘ 𝐺 )
4 iseqlg.l 𝐿 = ( LineG ‘ 𝐺 )
5 iseqlg.g ( 𝜑𝐺 ∈ TarskiG )
6 iseqlg.a ( 𝜑𝐴𝑃 )
7 iseqlg.b ( 𝜑𝐵𝑃 )
8 iseqlg.c ( 𝜑𝐶𝑃 )
9 iseqlgd.1 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐵 𝐶 ) )
10 iseqlgd.2 ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐶 𝐴 ) )
11 iseqlgd.3 ( 𝜑 → ( 𝐶 𝐴 ) = ( 𝐴 𝐵 ) )
12 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
13 1 2 12 5 6 7 8 7 8 6 9 10 11 trgcgr ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐵 𝐶 𝐴 ”⟩ )
14 1 2 3 4 5 6 7 8 iseqlg ( 𝜑 → ( ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( eqltrG ‘ 𝐺 ) ↔ ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐵 𝐶 𝐴 ”⟩ ) )
15 13 14 mpbird ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ∈ ( eqltrG ‘ 𝐺 ) )