| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iseqlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | iseqlg.m | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | iseqlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | iseqlg.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 5 |  | iseqlg.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | iseqlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 7 |  | iseqlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 8 |  | iseqlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 9 |  | iseqlgd.1 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐵  −  𝐶 ) ) | 
						
							| 10 |  | iseqlgd.2 | ⊢ ( 𝜑  →  ( 𝐵  −  𝐶 )  =  ( 𝐶  −  𝐴 ) ) | 
						
							| 11 |  | iseqlgd.3 | ⊢ ( 𝜑  →  ( 𝐶  −  𝐴 )  =  ( 𝐴  −  𝐵 ) ) | 
						
							| 12 |  | eqid | ⊢ ( cgrG ‘ 𝐺 )  =  ( cgrG ‘ 𝐺 ) | 
						
							| 13 | 1 2 12 5 6 7 8 7 8 6 9 10 11 | trgcgr | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐵 𝐶 𝐴 ”〉 ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 | iseqlg | ⊢ ( 𝜑  →  ( 〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( eqltrG ‘ 𝐺 )  ↔  〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐵 𝐶 𝐴 ”〉 ) ) | 
						
							| 15 | 13 14 | mpbird | ⊢ ( 𝜑  →  〈“ 𝐴 𝐵 𝐶 ”〉  ∈  ( eqltrG ‘ 𝐺 ) ) |