| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iseqlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
iseqlg.m |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
iseqlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
iseqlg.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
iseqlg.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
iseqlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
iseqlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
iseqlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
iseqlgd.1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐶 ) ) |
| 10 |
|
iseqlgd.2 |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐶 − 𝐴 ) ) |
| 11 |
|
iseqlgd.3 |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐴 − 𝐵 ) ) |
| 12 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
| 13 |
1 2 12 5 6 7 8 7 8 6 9 10 11
|
trgcgr |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐵 𝐶 𝐴 ”〉 ) |
| 14 |
1 2 3 4 5 6 7 8
|
iseqlg |
⊢ ( 𝜑 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( eqltrG ‘ 𝐺 ) ↔ 〈“ 𝐴 𝐵 𝐶 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐵 𝐶 𝐴 ”〉 ) ) |
| 15 |
13 14
|
mpbird |
⊢ ( 𝜑 → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ ( eqltrG ‘ 𝐺 ) ) |