Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iseqlg.p | |- P = ( Base ` G ) |
|
iseqlg.m | |- .- = ( dist ` G ) |
||
iseqlg.i | |- I = ( Itv ` G ) |
||
iseqlg.l | |- L = ( LineG ` G ) |
||
iseqlg.g | |- ( ph -> G e. TarskiG ) |
||
iseqlg.a | |- ( ph -> A e. P ) |
||
iseqlg.b | |- ( ph -> B e. P ) |
||
iseqlg.c | |- ( ph -> C e. P ) |
||
iseqlgd.1 | |- ( ph -> ( A .- B ) = ( B .- C ) ) |
||
iseqlgd.2 | |- ( ph -> ( B .- C ) = ( C .- A ) ) |
||
iseqlgd.3 | |- ( ph -> ( C .- A ) = ( A .- B ) ) |
||
Assertion | iseqlgd | |- ( ph -> <" A B C "> e. ( eqltrG ` G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqlg.p | |- P = ( Base ` G ) |
|
2 | iseqlg.m | |- .- = ( dist ` G ) |
|
3 | iseqlg.i | |- I = ( Itv ` G ) |
|
4 | iseqlg.l | |- L = ( LineG ` G ) |
|
5 | iseqlg.g | |- ( ph -> G e. TarskiG ) |
|
6 | iseqlg.a | |- ( ph -> A e. P ) |
|
7 | iseqlg.b | |- ( ph -> B e. P ) |
|
8 | iseqlg.c | |- ( ph -> C e. P ) |
|
9 | iseqlgd.1 | |- ( ph -> ( A .- B ) = ( B .- C ) ) |
|
10 | iseqlgd.2 | |- ( ph -> ( B .- C ) = ( C .- A ) ) |
|
11 | iseqlgd.3 | |- ( ph -> ( C .- A ) = ( A .- B ) ) |
|
12 | eqid | |- ( cgrG ` G ) = ( cgrG ` G ) |
|
13 | 1 2 12 5 6 7 8 7 8 6 9 10 11 | trgcgr | |- ( ph -> <" A B C "> ( cgrG ` G ) <" B C A "> ) |
14 | 1 2 3 4 5 6 7 8 | iseqlg | |- ( ph -> ( <" A B C "> e. ( eqltrG ` G ) <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) ) |
15 | 13 14 | mpbird | |- ( ph -> <" A B C "> e. ( eqltrG ` G ) ) |