Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iseqlg.p | |- P = ( Base ` G ) | |
| iseqlg.m | |- .- = ( dist ` G ) | ||
| iseqlg.i | |- I = ( Itv ` G ) | ||
| iseqlg.l | |- L = ( LineG ` G ) | ||
| iseqlg.g | |- ( ph -> G e. TarskiG ) | ||
| iseqlg.a | |- ( ph -> A e. P ) | ||
| iseqlg.b | |- ( ph -> B e. P ) | ||
| iseqlg.c | |- ( ph -> C e. P ) | ||
| iseqlgd.1 | |- ( ph -> ( A .- B ) = ( B .- C ) ) | ||
| iseqlgd.2 | |- ( ph -> ( B .- C ) = ( C .- A ) ) | ||
| iseqlgd.3 | |- ( ph -> ( C .- A ) = ( A .- B ) ) | ||
| Assertion | iseqlgd | |- ( ph -> <" A B C "> e. ( eqltrG ` G ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iseqlg.p | |- P = ( Base ` G ) | |
| 2 | iseqlg.m | |- .- = ( dist ` G ) | |
| 3 | iseqlg.i | |- I = ( Itv ` G ) | |
| 4 | iseqlg.l | |- L = ( LineG ` G ) | |
| 5 | iseqlg.g | |- ( ph -> G e. TarskiG ) | |
| 6 | iseqlg.a | |- ( ph -> A e. P ) | |
| 7 | iseqlg.b | |- ( ph -> B e. P ) | |
| 8 | iseqlg.c | |- ( ph -> C e. P ) | |
| 9 | iseqlgd.1 | |- ( ph -> ( A .- B ) = ( B .- C ) ) | |
| 10 | iseqlgd.2 | |- ( ph -> ( B .- C ) = ( C .- A ) ) | |
| 11 | iseqlgd.3 | |- ( ph -> ( C .- A ) = ( A .- B ) ) | |
| 12 | eqid | |- ( cgrG ` G ) = ( cgrG ` G ) | |
| 13 | 1 2 12 5 6 7 8 7 8 6 9 10 11 | trgcgr | |- ( ph -> <" A B C "> ( cgrG ` G ) <" B C A "> ) | 
| 14 | 1 2 3 4 5 6 7 8 | iseqlg | |- ( ph -> ( <" A B C "> e. ( eqltrG ` G ) <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) ) | 
| 15 | 13 14 | mpbird | |- ( ph -> <" A B C "> e. ( eqltrG ` G ) ) |