Metamath Proof Explorer


Theorem iseqlgd

Description: Condition for a triangle to be equilateral. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses iseqlg.p
|- P = ( Base ` G )
iseqlg.m
|- .- = ( dist ` G )
iseqlg.i
|- I = ( Itv ` G )
iseqlg.l
|- L = ( LineG ` G )
iseqlg.g
|- ( ph -> G e. TarskiG )
iseqlg.a
|- ( ph -> A e. P )
iseqlg.b
|- ( ph -> B e. P )
iseqlg.c
|- ( ph -> C e. P )
iseqlgd.1
|- ( ph -> ( A .- B ) = ( B .- C ) )
iseqlgd.2
|- ( ph -> ( B .- C ) = ( C .- A ) )
iseqlgd.3
|- ( ph -> ( C .- A ) = ( A .- B ) )
Assertion iseqlgd
|- ( ph -> <" A B C "> e. ( eqltrG ` G ) )

Proof

Step Hyp Ref Expression
1 iseqlg.p
 |-  P = ( Base ` G )
2 iseqlg.m
 |-  .- = ( dist ` G )
3 iseqlg.i
 |-  I = ( Itv ` G )
4 iseqlg.l
 |-  L = ( LineG ` G )
5 iseqlg.g
 |-  ( ph -> G e. TarskiG )
6 iseqlg.a
 |-  ( ph -> A e. P )
7 iseqlg.b
 |-  ( ph -> B e. P )
8 iseqlg.c
 |-  ( ph -> C e. P )
9 iseqlgd.1
 |-  ( ph -> ( A .- B ) = ( B .- C ) )
10 iseqlgd.2
 |-  ( ph -> ( B .- C ) = ( C .- A ) )
11 iseqlgd.3
 |-  ( ph -> ( C .- A ) = ( A .- B ) )
12 eqid
 |-  ( cgrG ` G ) = ( cgrG ` G )
13 1 2 12 5 6 7 8 7 8 6 9 10 11 trgcgr
 |-  ( ph -> <" A B C "> ( cgrG ` G ) <" B C A "> )
14 1 2 3 4 5 6 7 8 iseqlg
 |-  ( ph -> ( <" A B C "> e. ( eqltrG ` G ) <-> <" A B C "> ( cgrG ` G ) <" B C A "> ) )
15 13 14 mpbird
 |-  ( ph -> <" A B C "> e. ( eqltrG ` G ) )